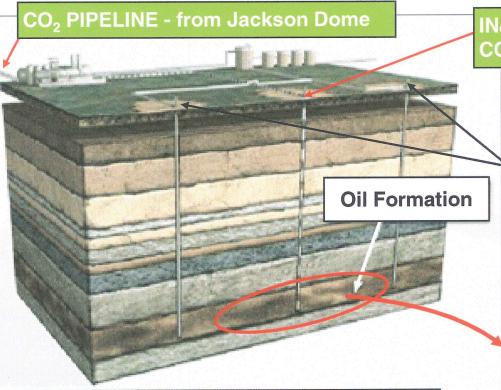
Denbury

Defining Denbury

Who We Are:

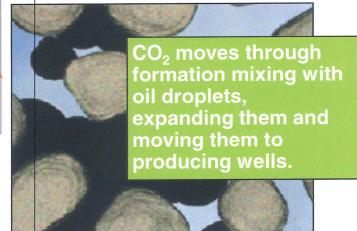

- Denbury is the Leading CO₂ Enhanced Oil Recovery (CO₂-EOR) Company in the Gulf Coast Region, with an Emerging Presence in the Rocky Mountains
- We are the Largest Equity Owner/User of CO₂ in the Gulf Coast Region
- We are one of the Largest Oil-Focused Independents

What We Do:

 Denbury is Aggressively Exploiting Our Large Inventory of Gulf Coast and Rocky Mountain CO₂-EOR Development Opportunities

CO₂ Operations: Oil Recovery Process

INJECTION WELL - Injects CO₂ in dense phase

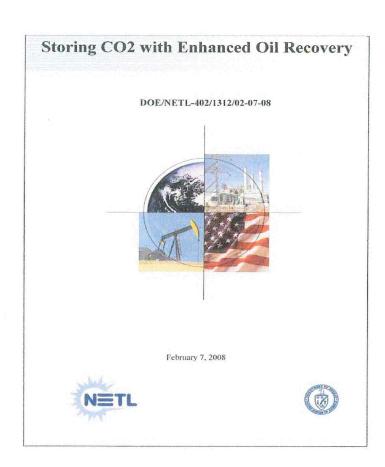

PRODUCTION WELLS
Produce oil, water and CO₂
(CO₂ is recycled)

Model for Oil Recovery Using CO₂ is +/- 17% of Original Oil in Place (Based on Little Creek)

Primary recovery = +/- 20%

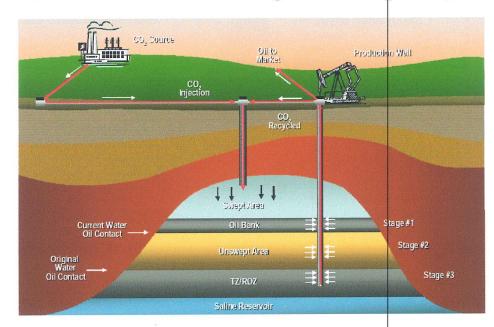
Secondary recovery (waterfloods) = +/- 18%

Tertiary $(CO_2) = +/- 17\%$

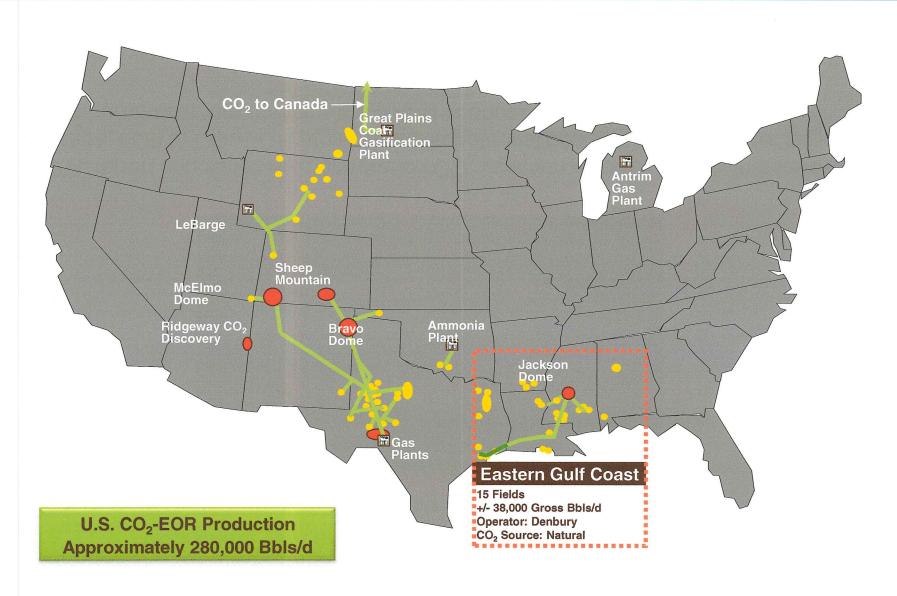


CO₂-EOR Potential

DOE/NETL Report:


- "CO₂ enhanced oil recovery (CO₂-EOR)
 offers the potential for storing significant
 volumes of carbon dioxide emissions while
 increasing domestic oil production"
- Approximately 84.8 billion barrels of oil in existing US oilfields could be recovered using state-of-the-art CO₂-EOR
 (In a range of \$50-\$100/barrel, it is economically feasible to recover 39 to 48 billion barrels)
- Next generation technology offers potential for recovering more stranded oil and storing significantly more CO₂
- Infrastructure for CO₂-EOR can be used for large-scale carbon capture and sequestration (CCS) projects in underlying saline formations

Next Generation: CO₂-EOR + CCS

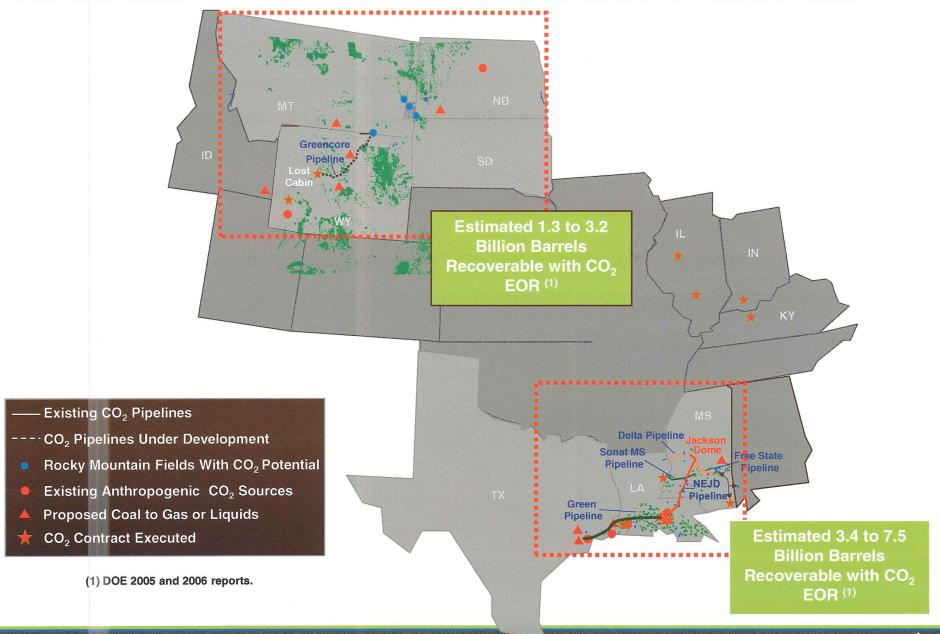

Illustration of "Next Generation" Integration of CO₂ Storage and EOR

- NETL report concludes next generation CO₂ injection will significantly increase CO₂ storage, both in CO₂-EOR projects and in potential post-production use for large scale carbon capture and storage (CCS) in underlying saline formations
- Based on current West Texas* projects, CO₂-EOR stores ~70% of the CO₂ released by the oil produced; NETL foresees next generation projects storing as much as 160% of the CO₂ released by the oil produced

Current U.S. CO₂ Sources & Pipelines

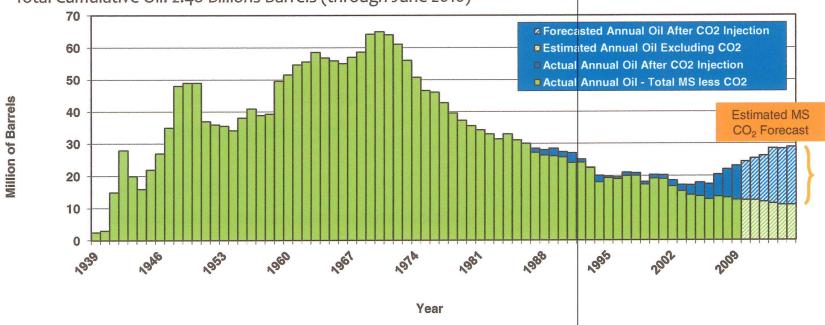


CO₂ Pipelines: Transportation is Essential



- The 320 mile Green Pipeline, Denbury's Largest Capital Project, is Strategic to Our Long-term Growth Plans and Success.
 - Total Investment \$850 to \$875 Million.
 - Capacity 800 MMCFD
- The 232 mile Greencore Pipeline in Wyoming started construction in August 2011
 - Total Investment \$275 to \$325 Million
 - Capacity 725 MMCFD
- CO₂ Emitters Such as, Power Plants, Coal Gasification Facilities, Chemical Plants, etc.
 Require Nearly Continuous Run-time (24/7 Operations).

CO₂-EOR Potential in the Gulf Coast and Rockies



CO₂ Can Impact the Future Production Decline

Mississippi Annual Oil Production

Total Cumulative Oil: 2.48 Billions Barrels (through June 2010)

CO2 EOR Has Increased Mississippi Oil Production

- CO₂ EOR operations increase domestic oil production
- · Creates jobs and improves the local economies in which we operate
- Provides a promising method to safely sequester industrial CO₂ emissions
- · Helps reduce our nation's need for imported oil
- From 2006 to 2009 total oil production for Mississippi has increased approximately 25%
- From 2006 to 2009 CO₂ oil production for Mississippi has increased from 27% to 46% of total Mississippi oil production
- From 2006 to 2009 CO2 EOR grew an average 22% annually

Potential Sources of Additional CO₂

- Natural Sources Jackson Dome (Gulf Coast)
 - Estimated +/- 5 Tcf of additional potential reserves
- Existing Rocky Mountain Sources
 - Could be several hundred MMcf/d
- Carbon Gasification Projects
 - Convert solid carbon into Syngas
 - Syngas can be converted into various products
 - By product is CO₂
- Existing Emitters of "Pure" CO₂
 - Up to 150 MMcf/d in the aggregate
 - Smaller volumes per plant
- Existing Emitters of "Dilute" CO₂
 - Large volumes
 - Expensive to capture based on current technologies

Potential Midwest Pipeline

The Future is Now

- Advancing U.S. Energy Production:
 - CO₂-EOR can recover billions of barrels of identified oil from existing US oilfields, and offers immediate production without additional exploration and development lead times
 - The environmental impact of every barrel of recovered US oil from CO₂-EOR could be offset by carbon capture and storage (CCS), versus no CO₂ reduction for imported oil
- Infrastructure for Future CCS Solutions:
 - CO₂ pipeline networks will enable large-scale CCS during enhanced oil recovery and in post-production utilization of underlying saline formations
 - CO₂ pipeline networks provide the basic infrastructure needed for development of carbon solutions for environmentally-sensitive industrial developments including existing power plants, industrial sites, innovative gasification projects that can produce transportation fuels, power, substitute natural gas, fertilizer and chemicals from plentiful U.S. natural resources

Sequestration in CO₂-EOR

- Regulatory Framework Exists for CO₂-EOR and Sequestration
 - Right to Inject CO₂ Exists Under our Mineral Leases
 - Injection Wells are Permitted Under Existing EPA UIC Regulations
 - CO₂ Pipelines are Regulated by the DOT and OPS Under Existing Regulations
 - Oil and Gas Operations are Regulated by State Regulators
 - Geologic Description of Reservoirs are Well Understood
 - We know where the CO₂ will be
 - The Only Regulatory Piece Missing is Post Injection Monitoring
 - Based on initial indications from regulatory workshops, the cost of post injection monitoring appears reasonable - EPA rule making how completed
 - Post injection monitoring stage for CO₂-EOR is 20 to 40 years into the future

Sequestration in Saline Reservoirs

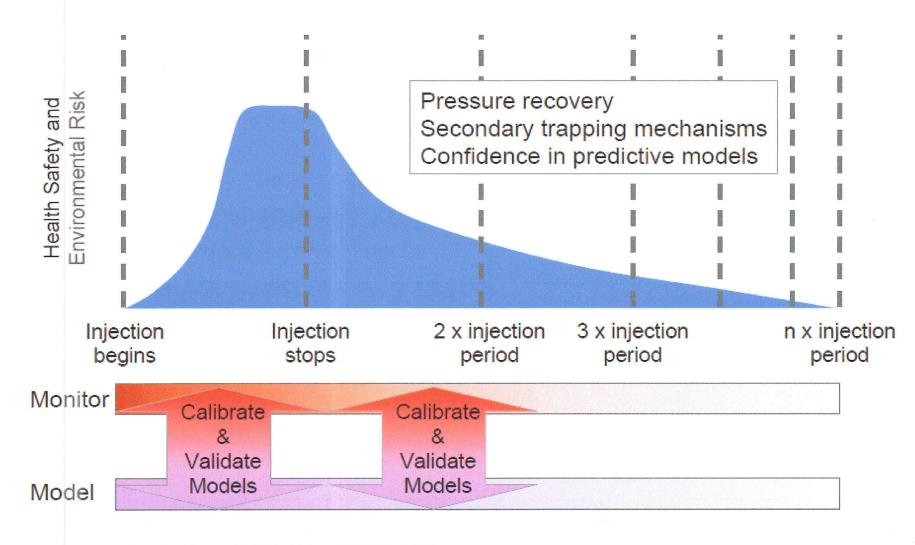
- Regulatory Framework does not Exist for CO₂ Sequestration in Saline Reservoirs
 - Pore Space Ownership
 - EPA Class VI CO₂ Injection Well Rule
 - Who will Regulate CO₂ Storage: Federal or States?
 - States: Environmental Quality Department (DEQs) or Oil and Gas Departments (MSOGB)
 - Geologic Description of Reservoirs are not Well Understood
 - Where will the CO₂ be?
 - Most States have a form of Unitization for Oil and Gas Operations
 - How do you amalgamate the necessary pore space for CCS?
 - Oil and gas model of unitization? Compulsory or voluntary?
 - Eminent Domain?

Carbon Capture & Storage – Geologic Examples

- Base Case Single Project Emitting 200 MMcf/d of CO₂
 - 30 Year Life
 - Total CO₂ Emissions 2.2 Tcf of CO₂

Oil Field

- **-** +/- 6.500'
- Reservoir Pressure +/- 3,000 psi
- Areal Extent 20,000 acres
- Storage Capacity +/- 1.6 Tcf
- 217 of 223 Tracts Ratified the Unit


Saline

- **6**,500'
- Reservoir Pressure 3,000 psi
- Thickness 125'
- Porosity 20%
- Percent of Pore Space Utilized 4%
- Pore Space Required: ±150,000 acres (±233 square miles)

Idealized Risk of CO₂ Sequestration

Quantitative Assessment of Long-term Liability & Risk Management

Source: Stanford University Global Climate & Energy Project

What is Needed and Can Be Done Today

- Federal/State Law and Policy should recognize that CO₂-EOR is CCS
 - 40 years of safe and secure experience
 - Only CCS strategy that can be done today
- Incentives, not regulations, will encourage deployment of CCS technology
 - IRS 45Q Tax Credits (\$10/ton for EOR and \$20/ton for \$aline)
 - Tie to domestic energy development (both new coal and oil)
 - Only market financial engine available to develop CO₂ pipeline system
 - EPA MVA rule needs to be workable (Class VI vs. Class II UIC wells)
 - States/EPA need to certify CO₂ volumes as being sequestered
- Pore Space Ownership issues
 - Mechanism needed to aggregate large areas of underground storage space
 - While developing, oilfield can provide early CCS for decades
- Liability issues
 - Current proposals (insurance/trust fund) not necessary for CO₂-EOR
 - Low to non-existent risk in oilfield operational vs. underground

Bottom Line: CO_2 -EOR is a viable, economical and technologically feasible way to encourage CCS of anthropogenic CO_2 in a safe and secure manner under a known and proven regulatory system